Combinatorial Interpretations of Congruences for the Spt-function

نویسندگان

  • GEORGE E. ANDREWS
  • FRANK G. GARVAN
  • JIE LIANG
چکیده

Let spt(n) denote the total number of appearances of the smallest parts in all the partitions of n. In 1988, the second author gave new combinatorial interpretations of Ramanujan’s partition congruences mod 5, 7 and 11 in terms of a crank for weighted vector partitions. In 2008, the first author found Ramanujantype congruences for the spt-function mod 5, 7 and 13. We give new combinatorial interpretations of the spt-congruences mod 5 and 7. These are in terms of the same crank but for a restricted set of vector partitions. The proof depends on relating the spt-crank with the crank of vector partitions and the Dyson rank of ordinary partitions. We derive a number of identities for spt-crank modulo 5 and 7. We prove the surprising result that all the spt-crank coefficients are nonnegative.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-conjugate Vector Partitions and the Parity of the Spt-function

Abstract. Let spt(n) denote the total number of appearances of the smallest parts in all the partitions of n. Recently, we found new combinatorial interpretations of congruences for the spt-function modulo 5 and 7. These interpretations were in terms of a restricted set of weighted vector partitions which we call S-partitions. We prove that the number of self-conjugate S-partitions, counted wit...

متن کامل

Higher Order Spt-functions

Andrews’ spt-function can be written as the difference between the second symmetrized crank and rank moment functions. Using the machinery of Bailey pairs a combinatorial interpretation is given for the difference between higher order symmetrized crank and rank moment functions. This implies an inequality between crank and rank moments that was only known previously for sufficiently large n and...

متن کامل

Congruences for Andrews’ Spt-function

Congruences are found modulo powers of 5, 7 and 13 for Andrews’ smallest parts partition function spt(n). These congruences are reminiscent of Ramanujan’s partition congruences modulo powers of 5, 7 and 11. Recently, Ono proved explicit Ramanujan-type congruences for spt(n) modulo ` for all primes ` ≥ 5 which were conjectured earlier by the author. We extend Ono’s method to handle the powers of...

متن کامل

Congruences for Andrews ’ Spt - Function modulo Powers of 5 , 7 and 13

Abstract. Congruences are found modulo powers of 5, 7 and 13 for Andrews’ smallest parts partition function spt(n). These congruences are reminiscent of Ramanujan’s partition congruences modulo powers of 5, 7 and 11. Recently, Ono proved explicit Ramanujan-type congruences for spt(n) modulo for all primes ≥ 5 which were conjectured earlier by the author. We extend Ono’s method to handle the pow...

متن کامل

On Spt-crank Type Functions

In a recent paper, Andrews, Dixit, and Yee introduced a new spt-type function spt ω (n), which is closely related to Ramanujan’s third order mock theta function ω(q). Garvan and Jennings-Shaffer introduce a crank function which explains congruences for spt ω (n). In this note, we study asymptotic behavior of this crank function and confirm a positivity conjecture of the crank asymptotically. We...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011